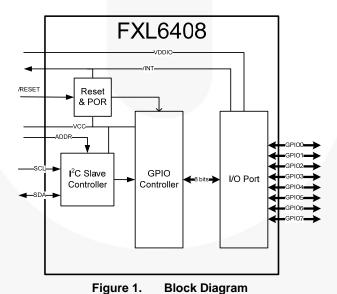


Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo


FXL6408 Fully Configurable 8-Bit I²C-Controlled GPIO Expander

Features

- 4X Expansion of Connected Processor I/O Ports
- Fully Integrated I²C Slave
- 8 Independently Configurable I/O Ports
- Low-Power Quiescent Current: 1.5 µA
- Voltage Translation Capable from 1.65 V I²C Port Up to 4.0 V GPIO Pins
- Selectable Device Address
- 6 mA Output Drive
- Interrupt Pin to Alert Processor of Status Changes

Description

The FXL6408 is an 8-bit I²C-controlled GPIO expander. When configured in Input Mode, the FXL6408 monitors the input ports for data transitions and signals the baseband by asserting the /INT pin. The input default values can be programmed independently, allowing customized input detection. All inputs can be configured with pull-up or pull-down resistors to pre-bias the inputs in open-drain or non-driven applications. When configured in Output Mode, the GPIO pins are capable of delivering 6 mA output drive according to the I²C register set. The FXL6408 is designed to allow voltage translation from levels as low as 1.65 V and up to 4.0 V. The FXL6408 features an active LOW RESET input as well as Power-On Reset (POR) circuit and I²C software reset options.

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package	Packing Method
FXL6408UMX	XT	-40 to 85°C	16-Lead, UMLP, Quad, Ultrathin MLP, 1.8 X 2.6 mm Body	5000 Units on Tape and Reel

Pin Configurations

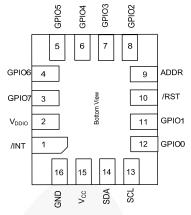


Figure 2. Bottom View

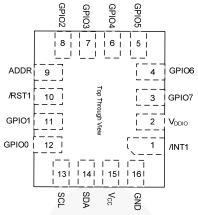


Figure 3. Top Through View

Pin Descriptions

Pin#	Pin Name	Description
1	/INT	Interrupt output, open-drain, active LOW; requires an external pull-up resistor to V _{CC}
2	V _{DDIO}	Voltage reference for I/O-side voltage translation (if I/O translation is not needed, tie V_{DDIO} to the V_{CC} supply)
3	GPIO7	General-purpose programmable I/O
4	GPIO6	General-purpose programmable I/O
5	GPIO5	General-purpose programmable I/O
6	GPIO4	General-purpose programmable I/O
7	GPIO3	General-purpose programmable I/O
8	GPIO2	General-purpose programmable I/O
9	ADDR	Address input, GND or V _{CC}
10	/RST	Reset input, active LOW, requires a pull-up resistor to V _{CC}
11	GPIO1	General-purpose programmable I/O
12	GPIO0	General-purpose programmable I/O
13	SCL	I ² C serial bus; requires a pull-up resistor to V _{CC}
14	SDA	I ² C serial data; requires a pull-up resistor to V _{CC}
15	V _{CC}	Supply voltage
16	GND	Ground

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{CC} , V _{DDIO}	Supply Voltages		-0.5	4.6	V
V_{IN}	DC Input Voltage		-0.5	4.0	V
V _{OUT}	Output Voltage ⁽¹⁾		-0.5	4.0	V
I _{IK}	DC Input Diode Current	V _{IN} < 0 V		-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < 0 V		-50	mA
l _{OL}	DC Output Sink Current			+50	mA
I _{CC}	DC V _{CC} or Ground Current per	Supply Pin		±100	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Junction Temperature under B	ias		+150	°C
TL	Junction Lead Temperature, S	oldering 10 Seconds		+260	°C
Θ_{JA}	Thermal Resistance, Junction-	to-Ambient		115	°C/W
ESD	Electrostatic Discharge	Human Body Model, JESD22-A114		4	kV
ESD	Capability	Charged Device Model, JESD22-C101		2	, KV

Note:

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{CC}	Supply Voltage Operating		1.65	3.60	V
V_{DDIO}	I/O Side Reference Voltage		1.65	4.00	V
V _{IN}	Input Voltage on I/O pins		0	4.0	V
Vout	Output Voltage		0	V_{DDIO}	٧
T _A	Operating Temperature		-40	+85	°C
t _r , t _f	Input Rise and Fall Times to I/O Pins	V _{DDIO} at 1.8 V, 2.5 V ±0.2 V	0	200	ns/V
ır, lf	when Configured as Inputs	V _{DDIO} at 3.6 V ± 0.3 V	0	100	115/ V

^{1.} All output current absolute maximum ratings must be observed.

DC Electrical Characteristics

Symbol	Parameter	Condition	V _{cc} (V)	Т	_A =25°	С		40 to 5°C	Unit
·				Min.	Тур.	Max.	Min.	Max.	
RST, ADI	DR, SDA, SCL, /INT Pins				<u> </u>				•
V_{POR}	Power-On Reset Voltage	V _{DDIO} =0 to 4.0 V				1.25		1.25	V
I _{IN}	Input Leakage Current	$0 \leq V_{IN} \leq V_{CC}$	0 to 3.6			±1		±10	μΑ
I _{OFF}	Power-Off Leakage Current	V _{IN} or V _{OUT} =3.6 V	0			1		10	μΑ
Icc	Standby Mode (SCL in Static Condition)	V _{IN} =V _{CC} or GND	1.8 to 3.6			1.2		1.5	μA
.00	Active Mode ⁽²⁾ (SCL Active)	7117 700 01 0112				300		300	μ., τ
GPIO Pi	ns		V _{DDIO} (V)						
V _{IH}	HIGH Level Input Voltage		1.65 to 1.95	0.65 V _{DDIO}			0.65 V _{DDIO}		V
VIH	Thorr Level input voltage		2.30 to 4.00	0.70 V _{DDIO}			0.70 V _{DDIO}		
V_{IL}	LOW Level Input Voltage		1.65 to 1.95	-0.3		0.35 V _{DDIO}	-0.3	0.35 V_{DDIO}	V
VIL	LOW Level Input Voltage		2.30 to 4.0	-0.3		0.30 V _{DDIO}	-0.3	0.30 V _{DDIO}	
		V _{IN} =V _{IH} , I _{OH} =100 μA	1.8	V _{DDIO} - 0.2			V _{DDIO} - 0.2		V
			3.6	V _{DDIO} - 0.2			V _{DDIO} - 0.2		
V_{OH}	HIGH Level Output Voltage		4.0	V _{DDIO} - 0.2			V _{DDIO} - 0.2		
		I _{OH} =6 mA	1.8	V _{DDIO} - 0.45			V _{DDIO} - 0.45		
			3.6	V _{DDIO} - 0.45			V _{DDIO} - 0.45		
			1.8			0.2		0.2	V
		V _{IN} =V _{IL} , I _{OL} = -100 μA	3.6			0.2		0.2	
V_{OL}	LOW Level Output Voltage		4.0			0.2		0.2	
		I _{OL} =-6 mA	1.8			0.45		0.45	
			3.6			0.5		0.5	
R _{PULL}	Pull-Up or Pull-Down Resistors				100			(F	kΩ
I _{OL}	Output Low Current		1.8 to 4.0	6.0	3.3		6.0	1	mA
I _{OH}	Output High Current		1.8 to 4.0	-6.0			-6.0		
I _{IN}	Input Low Current ⁽³⁾ Power-Off Leakage	$0 \le V_{IN} \le V_{DDIO}$	1.8 to 4.0			±50		±50	μΑ
I _{OFF}	Current	V _{IN} =4.0 V	0			1		10	μA

Notes:

- Includes all internal circuitry consumption from the V_{CC} supply. Does not include the I/O buffers, which are
- supplied by V_{DDIO} and are load dependent. I_{IL} and I_{IH} specifications only apply when the outputs are configured with pull-down or pull-up resistors, respectively. Specifications values assume $V_{IN} \le V_{DDIO}$.

AC Electrical Characteristics

All typical value are for V_{CC} =1.8 V at T_A = 25°C unless otherwise specified.

Cumbal	Devemeter		Fast Mode)
Symbol	Parameter	Min.	Max.	Unit
t _w	Reset Pulse Duration (see Figure 4)	150		ns
t _{RST_GLITCH}	Input Glitch Rejection on RST Pin (see Figure 4)	50	150	ns
t _{RESET}	Reset Time, Total Time from Rising Edge of Reset Pulse to Falling Edge of /INT Pin (see Figure 5)		150	ns
t _{IV}	Time from Input Default State Change to /INT Pin Driven LOW (see Figure 6)		4	μs

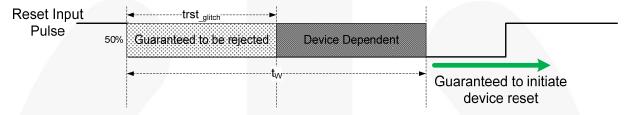


Figure 4. Reset Pulse Duration and Input Glitch Rejection Timing Diagram

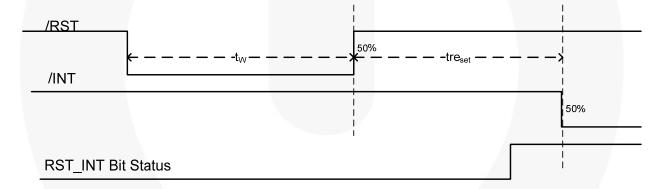


Figure 5. Reset Time and Reset Pulse Timing Diagram

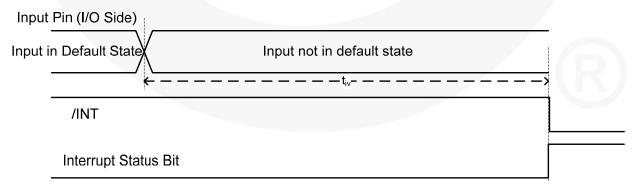


Figure 6. Time to INT from Change in Input Default State

DC Characteristics (I²C Controller SDA, SCL)

Cumbal	Parameter		Fast I	Mode (400	kHz)
Symbol	Parameter		Min.	Max.	Unit
V _{IL}	Low-Level Input Voltage		-0.5	0.3 V _{CC}	V
V _{IH}	High-Level Input Voltage		0.7 V _{CC}		V
\/	Hyptorogic of Cohmitt Trigger Inputs	V _{CC} > 2 V	0.05 V _{CC}		V
V _{HYS}	Hysteresis of Schmitt Trigger Inputs	V_{CC} < 2 V	0.1 V _{CC}		V
\/	Low-level Output Voltage at 3 mA Sink Current	V _{CC} > 2 V	0	0.4	٧
V _{OL}	(Open-Drain or Open-Collector)	V _{CC} < 2 V		0.2 V _{CC}	V
I _I	Input Current of Each I/O Pin, Input Voltage 0.26 V to 2.	34 V	-10	10	μA
Cı	Capacitance for Each I/O Pin			10	pF

AC Electrical Characteristics (I²C Controller SDA, SCL)

All typical value are for V_{CC}=1.8 V at T_A=25°C unless otherwise specified.

0	D	Fast Mo	de (400 k	Hz)
Symbol	Parameter	Min.	Max.	Unit
f _{SCL}	SCL Clock Frequency	0	400	kHz
t _{HD;STA}	Hold Time (Repeated) START Condition	0.6		μs
t _{LOW}	LOW Period of SCL Clock	1.3 ⁽⁴⁾		μs
t _{HIGH}	HIGH Period of SCL Clock	0.6		μs
t _{SU;STA}	Set Up Time for Repeated START Condition	0.6		μs
t _{HD;DAT}	Data Hold Time (See Figure 7)	0	0.9	μs
t _{SU;DAT}	Data Set Up Time (See Figure 7)	100 ⁽⁵⁾		ns
t _{PS}	Set Up Time Required by SDA Input Buffer (When Receiving Data)	0		ns
t _{PH}	Out Delay Required by SDA Output Buffer (When Transmitting Data)	300		ns
t _r	Rise Time of SDA and SCL Signals	20+0.1C _b ^(6,7)	300	ns
t _f	Fall Time of SDA and SCL Signals	20+0.1C _b ^(6,7)	300	ns
t _{SU;STOP}	Set Up Time for STOP Condition	0.6	0	μs
t _{BUF}	Bus Free Time between a STOP and START Conditions	1.3	/-	μs
t _{SP}	Pulse Width of Spikes that Must Be Suppressed by the Input Filter	0	50	ns

Notes:

- 4. The FXL6408 can accept clock signals with LOW as low as 1.1 μ s, provided that the received SDA signal $t_{HD;DAT}+t_{r/f} <=1.1 \ \mu$ s. The FXL6408 features a 0 ns SDA input setup time and, therefore, this parameter is not included in the above equation.
- 5. A Fast-Mode I²C-Bus[®] device can be used in a Standard-Mode I²C-Bus system, but the requirement t_{SU;DAT} ≥ 250 ns must be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal. It must output the next data bit to the SDA line t_{r_max} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C bus specification) before the SCL line is released.
- 6. C_b equals the total capacitance of one bus line in pF. If mixed with High-Speed Mode devices, faster fall times are allowed, according to the I²C specification.
- 7. The FXL6408 ensures that the SDA signal out must coincide with SCL LOW for worst-case SCL t_f maximum times of 300 ns. This requirement prevents data loss by preventing SDA out transitions during the undefined region of the falling edge of SCL. Consequently, the FXL6408 fulfils the following requirement from the I²C specification, note 2 on page 77: "A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL."
- 8. FXL6408 I²C slave is fully compliant the NXP (Phillips) I²C specification Rev. 0.3 UM10204 (2007).

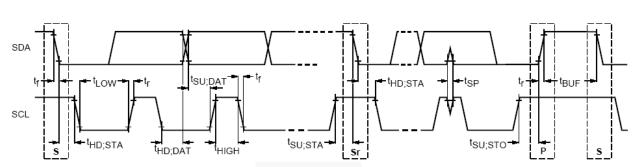


Figure 7. Definition of Timing for Full-Speed Mode Devices on the I²C-Bus[®]

Trademarks are the property of their respective owners.

Functional Description

Overview

The FXL6408 I/O expander frees up six ports of the central processor to be dedicated for more critical functions. The FXL6408 enables the addition of eight General-Purpose Input / Output (GPIO) ports to a system processor while using two I/O ports for I²C control (net six additional I/Os). The device can be used in multiple applications, from button monitoring to driving control pins of other ICs in the system. It also allows the system designer to add new features and functions quickly without upgrading the central processor. The FXL6408 includes eight I/O pins controlled by an integrated I2C slave and allows the central processor to control each I/O independently. When configured as outputs, each pin can deliver up to 6 mA drive. When configured as inputs, the default state can be independently configured. In addition, the FXL6408 has integrated pull-up and pull-down resistors that are enabled via I²C commands in the register map. This allows the system designer to pre-bias the inputs to a known level to allow use with un-driven input signals.

Interrupt Operation

The /INT pin is a LOW-asserted open-drain output and requires an external pull-up resistor. The FXL6408 signals an interrupt to the processor when an event occurs, removing the need for the processor to continuously poll the FXL6408 registers. Immediately after detecting a change at an input, the FXL6408 writes the corresponding bit in the input interrupt status register (13_h) and asserts the /INT pin by pulling it LOW. The interrupt status register bit remains HIGH until the processor reads the register and clears the bit. If the input pin remains in the non-default state after the interrupt has been serviced, a new interrupt is not generated until after the input state has first returned to its default state and changed back to its non-default state. The FXL6408 also contains an Input Status register (0Fh) used to verify the current status of the given input at the time when the interrupt is serviced by the processor. These two registers allow the processor to determine the following information about any input every time the register map is read:

- If the input state changed from the default state since the most recent register read; and
- The current state of the input pin.

The interrupt output /INT, once asserted, is held LOW until the interrupt is serviced by the processor. This means that the system uses level-sensitive interrupts. Interrupt signaling is asynchronous to the SCL signal.

Device Reset

The FXL6408 has three reset options, all of which cause the part to reset all register settings to their default states. Immediately after device reset, the RST_INT bit in the Device ID & Ctrl register (01h) is HIGH and an interrupt signal is generated by the FXL6408. After the processor reads the register, this bit is cleared and, on future register reads, the processor can verify that the FXL6408 has not been reset if this bit remains LOW. Following are descriptions of the three reset methods.

Power-On Reset (POR)

On device power-up, when V_{CC} reaches V_{POR} or if the V_{CC} supply voltage drops below V_{POR} during operation, the FXL6408 immediately resets.

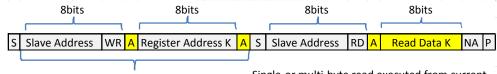
Software Reset

The FXL6408 can be reset by the processor using an I^2C write command to change bit 0 of register 01h to a 1. Immediately following this change, the FXL6408 resets and all register values return to their default values. In this case, the SW_RST bit returns to 0 as soon as the reset sequence is completed.

Reset Pin

The FXL6408 is reset when the /RST pin (C3) is pulled LOW.

Translation


The FXL6408 has the ability to translate between the system $\rm I^2C$ voltage reference and the I/O voltage reference. The V_{CC} pin is used both as the FXL6408 power supply as well as the voltage reference for the I²C inputs, ADDR, /INT, and RESET pins. The V_{DDIO} pin is used only for the voltage supply reference of the I/O ports. For example, a 1.8 V-referenced I²C Bus can be used to interface with the FXL6408 and control 3.6 V-referenced I/Os by supplying V_{CC} = 1.8 V and V_{DDIO} = 3.6 V. If translation is not needed, the system provides the same voltage to both the V_{CC} and V_{DDIO} pins. If both the I/O and I²C interfaces are referenced to 1.8 V, the V_{CC} supply and V_{DDIO} pin should both be tied to 1.8 V.

I²C Read / Write Procedures

Figure 8 and Figure 9 illustrate compatible I²C write and read sequences. The FXL6408 does not support burst read or write optional modes described in the I²C standard.

Figure 8. I²C Write Sequence

Register address to read specified

Single-or multi-byte read executed from current register location (single-byte read is initiated)

Note: If register is not specified, the master reads from the current register.

Figure 9. I²C Read Sequence

From Master to Slave From Slave to Master S Start ConditionA Acknowledge (SDA Low)

NA NOT Acknowledge (SDA High)
WR Write=0

RD Re

Read =1 Stop Condition

Table 1. I²C Address

Register	ADDR Pin	B7	B6	B5	B4	В3	B2	B1	В0
Davisa Address	ADDR=0	1	0	0	0	0	1	1	WR
Device Address	ADDR=1	1	0	0	0	1	0	0	WR

Table 2. I²C Register Map

Register	Address	Туре	В7	В6	В5	В4	В3	B2	B1	В0	Reset Value
Device ID & Ctrl	01h	R/W	MF3	MF2	MF1	FW_rev3	FW_rev2	FW_rev1	RST_INT	SW_RST	10100010
IO Direction	03h	R/W	GPIO7	GPIO6	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0	00000000
Output State	05h	R/W	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0	00000000
Output High-Z	07h	R/W	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0	11111111
Input Default State	09h	R/W	In 7	In 6	In 5	In 4	In 3	In 2	In 1	In 0	00000000
Pull Enable	0Bh	R/W	In 7	In 6	In 5	In 4	In 3	In 2	In 1	In 0	11111111
Pull-Down/ Pull-Up	0Dh	R/W	In 7	In 6	In 5	In 4	In 3	In 2	In 1	In 0	00000000
Input Status	0Fh	R	In 7	In 6	In 5	In 4	In 3	In 2	In 1	In 0	XXXXXXX
Interrupt Mask	11h	R/W	In 7	In 6	In 5	In 4	In 3	In 2	ln 1	In 0	00000000
Interrupt Status	13h	R/W	In 7	In 6	In 5	In 4	In 3	In 2	In 1	In 0	xxxxxxx
Reserved	02h, 04h, 06h, 08h, 0Ah, 0Ch, OEh,10h, 12h	Reserved	xxxxxxx								

Table 3. Device ID & Control

- Address 01_h
- RST INT flag is cleared after being read by master.
- For SW reset, the master writes bit 0 HIGH.

Bit#	Name	Bit Size	Description
7:5	MF	3	3-bit manufacturer ID assigned by Nokia, Bits 7:5 are 101 for Fairchild.
4:2	FW_rev	3	3-bit ascending value, indicating the firmware revision. Initial revision is 000.
1	RST_INT	1	Indicates that the device has been reset and the default values are set. 0: normal operation 1: the device has been reset and register default values are set.
0	SW_RST	1	Software reset: 0: normal operation 1: SW reset commanded

Table 4. IO Direction

Address 03_h

Bit#	Name	Bit Size	Descripti
7	GPI07	1	
6	GPIO6	1	
5	GPIO5	1	
4	GPIO4	1	0: GPIO configured as input.
3	GPIO3	1	1: GPIO configured as output.
2	GPIO2	1	
1	GPIO1	1	
0	GPIO0	1	

Table 5. Output State

- Address 05_h
- If the pin is defined as input in register 03_h, the corresponding bit has no effect.

Bit#	Name	Bit Size	Description
7	Out 7	1	
6	Out 6	1	
5	Out 5	1	
4	Out 4	1	0: GPIO output = LOW.
3	Out 3	1	1: GPIO output = HIGH.
2	Out 2	1	
1	Out 1	1	
0	Out 0	1	

Table 6. Output High-Z

- Address 07_h
- If the pin is defined as input in register 03h, the corresponding bit has no effect.

Bit#	Name	Bit Size	Description
7	Out 7	1	
6	Out 6	1	
5	Out 5	1	
4	Out 4	1	0: GPIO output state follows register 05 _h
3	Out 3	1	1: GPIO output = High-Z
2	Out 2	1	
1	Out 1	1	
0	Out 0	1	

Table 7. Input Default State

- Address 09_h
- Defines the expected state of the GPIO
- If the pin is defined as output in register 03h, the corresponding bit has no effect.

Bit#	Name	Bit Size	Description
7	In 7	1	
6	In 6	1	
5	In 5	1	0: GPIO input default is set to LOW; when the GPIO
4	In 4	1	goes HIGH, an interrupt is triggered.
3	In 3	1	1: GPIO input default is set to HIGH; when the GPIO
2	In 2	1	goes LOW, an interrupt is triggered.
1	In 1	1	
0	In 0	1	

Table 8. Pull Enable

- Address 0B_h
- Pull enable for input pin
- If the pin is defined as output in register 03_h, the corresponding bit has no effect.

Bit#	Name	Bit Size	Description
7	In 7	1	
6	In 6	1	
5	In 5	1	
4	In 4	1	0: GPIO input pull-up/pull-down is not enabled.
3	In 3	1	1: GPIO input Pull-up/Pull-down is enabled.
2	In 2	1	
1	In 1	1	
0	In 0	1	

Table 9. Pull-Down / Pull-Up

- Address 0Dh
- If the pin is defined as output in register 03h, the corresponding bit has no effect.
- If the corresponding bit in register 0B_h=0, this register setting has no effect.

Bit#	Name	Bit Size	Description
7	In 7	1	
6	In 6	1	
5	In 5	1	
4	In 4	1	0: GPIO input pull-down is enabled.
3	In 3	1	1: GPIO input pull-up is enabled.
2	In 2	1	
1	In 1	1	
0	In 0	1	

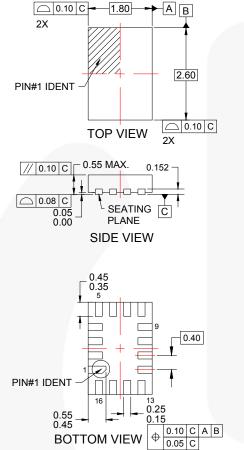
Table 10. Input Status

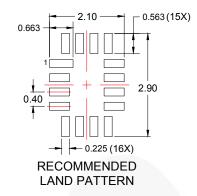
- Address 0F_h
- If the pin is defined as output in register 03h, the corresponding bit has no effect.
- This bit shows the real-time input pin status.

Bit#	Name	Bit Size	Description
7	In 7	1	
6	In 6	1	
5	In 5	1	
4	In 4	1	0: GPIO input is LOW.
3	In 3	1	1: GPIO input is HIGH.
2	ln 2	1	
1	In 1	1	
0	In 0	1	

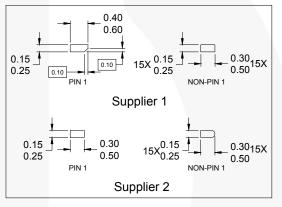
Table 11. Interrupt Mask

- Address 11_h
- If the pin is defined as output in register 03h, the corresponding bit has no effect.
- This bit enables the interrupt generation from input pin state change to INT.


Bit#	Name	Bit Size	Description
7	In 7	1	
6	In 6	1	
5	In 5	1	
4	In 4	1	0: GPIO input interrupt is generated.
3	In 3	1	1: GPIO input interrupt is masked.
2	In 2	1	
1	In 1	1	
0	In 0	1	


Table 12. Interrupt Status

- Address 13_h
- This bit is HIGH if input GPIO ≠ default state (register 09h).
- The flag is cleared after being read by the master (bit returns to 0).
- The input must go back to default state and change again before this flag is raised again.


Bit#	Name	Bit Size	Description
7	In 7	1	
6	In 6	1	
5	In 5	1	
4	In 4	1	0: GPIO input is in default state or the flag has been cleared.
3	In 3	1	1: GPIO input has changed state from default.
2	In 2	1	
1	In 1	1	
0	In 0	1	

Physical Dimensions

TERMINAL SHAPE VARIANTS

NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- D. LAND PATTERN RECOMMENDATION IS BASED ON FSC DESIGN ONLY.
- E. DRAWING FILENAME: MKT-UMLP16Arev4.
- F. TERMINAL SHAPE MAY VARY ACCORDING TO PACKAGE SUPPLIER, SEE TERMINAL SHAPE VARIANTS.

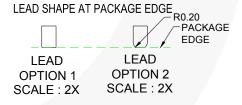


Figure 10. 16-lead, UMLP, QUAD, Ultra-Thin MLP, 1.8 x 2.6 mm

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 2Cool™
 F-PFS™

 AccuPower™
 FRFET®

 AX-CAP™*
 Global Power Resource®

 BitSiC™
 Green Bridge™

 Build it Now™
 Green FPS™

 CorePLUS™
 Green FPS™ e-Series™

CorePOWER™ Gmax™

CROSSVOLT™ GTO™

CTL™ IntelliMAX™

Current Transfer Logic™ ISOPLANAR™

DEUXPEED[®] Making Small Speakers Sound Louder
Dual Cool™ and Better™

Dual Cool™ and Better™

EcoSPARK® MegaBuck™

EfficientMax™ MICROCOUPLER™

ESBC™ MicroFetT™

MicroPak™

MicroPak™

MicroPak™

Fairchild® MillerDrive™

Fairchild Semiconductor® MotionMax™

FACT Quiet Series™ mWSaver™ mWSaver™ fACT® OptoHiT™ FAST® OPTOLOGIC® FastvCore™ OPTOPLANAR® FETBench™

FlashWriter®* FPS™ PowerTrench[®] PowerXS™

Programmable Active Droop™

QFET[®]
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W/kW at a time $^{\text{TM}}$

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

GSPERAL®**

The Power Franchise®
the Wer
franchise
TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™
TRUECURRENT®*
µSerDes™

UHC[®]
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms					
Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 162

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative